Nonnegative Entire Bounded Solutions to some Semilinear Equations Involving the Fractional Laplacian

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semilinear fractional elliptic equations involving measures

We study the existence of weak solutions to (E) (−∆)u+g(u) = ν in a bounded regular domain Ω in R (N ≥ 2) which vanish in R \Ω, where (−∆) denotes the fractional Laplacian with α ∈ (0, 1), ν is a Radon measure and g is a nondecreasing function satisfying some extra hypotheses. When g satisfies a subcritical integrability condition, we prove the existence and uniqueness of a weak solution for pr...

متن کامل

Asymptotic Spatial Patterns and Entire Solutions of Semilinear Elliptic Equations

(2) ε∆uε + f(uε) = 0, x ∈ Ω, Bu = 0, x ∈ ∂Ω, where ε > 0 is a small parameter, Ω is a smooth bounded domain in Rn, and Bu is an appropriate boundary condition. The connection of (1) and (2) are made by a typical technique called blowup method. Suppose that {uε} is a family of solutions of (2). The simplest setup of the blowup method is to choose Pε ∈ Ω, and define vε(y) = uε(εy + Pε), for y ∈ Ω...

متن کامل

Singular Solutions for some Semilinear Elliptic Equations

We are concerned with the behavior of u near x = O. There are two distinct cases: 1) When p >= N / ( N -2) and (N ~ 3) it has been shown by BR~ZIS & V~RON [9] that u must be smooth at 0 (See also BARAS & PIERRE [1] for a different proof). In other words, isolated singularities are removable. 2) When 1-< p < N / ( N 2) there are solutions of (1) with a singularity at x ---0. Moreover all singula...

متن کامل

Semilinear fractional elliptic equations with gradient nonlinearity involving measures

We study the existence of solutions to the fractional elliptic equation (E1) (−∆)u + ǫg(|∇u|) = ν in a bounded regular domain Ω of R (N ≥ 2), subject to the condition (E2) u = 0 in Ω, where ǫ = 1 or −1, (−∆) denotes the fractional Laplacian with α ∈ (1/2, 1), ν is a Radon measure and g : R+ 7→ R+ is a continuous function. We prove the existence of weak solutions for problem (E1)-(E2) when g is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Potential Analysis

سال: 2017

ISSN: 0926-2601,1572-929X

DOI: 10.1007/s11118-017-9645-7